Fish Recognition Based on Robust Features Extraction from Color Texture Measurements Using Back-propagation Classifier

نویسندگان

  • MUTASEM KHALIL
  • KHAIRUDDIN BIN OMAR
  • SHAHRUL AZMAN NOAH
  • IBRAHIM ALMARASHDEH
چکیده

Problem statement: image recognition is a challenging problem researchers had been research into this area for so long especially in the recent years, due to distortion, noise, segmentation errors, overlap, and occlusion of objects in digital images. In our study, there are many fields concern with pattern recognition, for example, fingerprint verification, face recognition, iris discrimination, chromosome shape discrimination, optical character recognition, texture discrimination, and speech recognition, the subject of pattern recognition appears. A system for recognizing isolated pattern of interest may be as an approach for dealing with such application. Scientists and engineers with interests in image processing and pattern recognition have developed various approaches to deal with digital image recognition problems such as, neural network, contour matching and statistics. Approach: in this work, our aim is to recognize an isolated pattern of interest in the image based on the combination between robust features extraction. Where depend on color texture measurements that are extracted by gray level co-occurrence matrix. Result: We presented a system prototype for dealing with such problem. The system started by acquiring an image containing pattern of fish, then the image segmentation is performed relying on color texture measurements. Our system has been applied on 20 different fish families, each family has a different number of fish types, and our sample consists of distinct 610 of fish images. These images are divided into two datasets: 500 training images, and 110 testing images. An overall accuracy is obtained using backpropagation classifier was 84% on the test dataset used. Conclusion: We developed a classifier for fish images recognition. We efficiently have chosen a image segmentation method to fit our demands. Our classifier successfully design and implement a decision which performed efficiently without any problems. Eventually, the classifier is able to categorize the given fish into its cluster and categorize the clustered fish into its poison or non-poison fish, and categorizes the poison and non-poison fish into its family.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fish Classification Based on Robust Features Extraction From Color Signature Using Back-Propagation Classifier

Problem statement: Image recognition was a challenging problem researchers had been research into this area for so long especially in the recent years, due to distortion, noise, segmentation errors, overlap and occlusion of objects in digital images. In our study, there are many fields concern with pattern recognition, for example, fingerprint verification, face recognition, iris discrimination...

متن کامل

Fish Recognition Based on Robust Features Extraction from Size and Shape Measurements Using Neural Network

Problem statement: Image recognition is a challenging problem researchers had been research into this area for so long especially in the recent years, due to distortion, noise, segmentation errors, overlap and occlusion of objects in digital images. In our study, there are many fields concern with pattern recognition, for example, fingerprint verification, face recognition, iris discrimination,...

متن کامل

Identification of Houseplants Using Neuro-vision Based Multi-stage Classification System

In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...

متن کامل

A General Fish Classification Methodology Using Meta-heuristic Algorithm with Back Propagation Classifier

Problem statement: One challenging research area nowadays is pattern recognition. Many applications lay under the field of pattern recognition such as face and iris recognition, speech recognition, texture discrimination and optical character recognition. A system that recognizes isolated pattern of interest is called pattern recognition. The pattern under consideration could be an image. Durin...

متن کامل

A Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection

Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010